
1

A Comparison of Configuration Management Tools
in Respect of Performance and Complexity

Dave Hill

Abstract—Cloud computing has brought many benefits to
business, one of the key being the ability to build resilience into
their IT infrastructure. This resilience comes with a cost though,
as the time utilised by these resources is what the cloud providers
charge for. As a result, optimising the time any resources are
alive is a key component of an architecture strategy. This
research project will aim to test several methods of bootstrapping
resources for use and document the findings in order to make
educated decisions regarding software deployments and overall
architecture design. The tools under test are Ansible, Chef,
Puppet and Salt and with this work, a test framework is also
made available to allow for future work to build off these findings.

Index Terms—Infrastructure, Infrastructure as code, IaC,
Terraform, AMI, AWS, Infastructure Automation, Configuration
Management, Chef, Puppet, Ansible, Salt, Terraform, Azure

I. INTRODUCTION

INFRASTRUCTURE Automation is one of the most preva-
lent consequences of the inevitable shift of the IT industry

to cloud computing. With computing hardware now available
on demand with relatively simple interfaces to provision
environments, this is an area that has become synonymous
with modern computing architecture and it’s impact has been
evident throughout a huge number of studies and reviews. As
capabilities and platforms have grown, mechanisms to control
cloud-based hardware have evolved and raised the standard of
rapid deployments and updates.

Configuration Management is understood as automating
the implementation, and maintenance, of a desired state for
provisioned hardware. Although this predates the move to-
wards cloud computing, the shift towards Infrastructure as
a Service (IaaS) has reinforced the importance of ensuring
that on-demand resources are not just initialised, but config-
ured to meet the needs of the software deployed to them.
Typical use-cases range from security and user management,
to dependency installation and even validation of hardware
provisioning.

A. Motivation

Companies with an online presence will agree that down-
time needs to be avoided at all costs. This is why such bold
claims from services like Amazon are seen, that state their
S3 services will be available 99.99% of the time (Amazon,
2019). A Gartner survey from 2014 stated the average cost per
minute of downtime was $5600 (Lerner, 2014). In Figure 1
the estimated costs per industry can be seen. While is unlikely
to see differences of hours throughout this study, these figures
are indicative of the potential that can be realised by further
optimising these processes. For example, in the case of the
Brokerage Service in Figure 1, a second of downtime can

Figure 1. Downtime Costs per industry (Plant, 2014)

cost $1800 so saving 4 or 5 seconds for every deployment can
make a huge financial impact. This is likely to continue to get
more expensive as e-commerce and digital services continue
to grow as seen in recent years (Oladapo and Onyeaso, 2018).

B. Contribution

The intended goal for this research is to highlight the
differences in performance across the various tools used in a
series of tests. This, coupled with the secondary set of metrics
of cost and usability, is intended to provide an insight into
the impact of each tool. Not all tools, or platforms are tested
due to limitations in time and a shrinking return on investment
when looking at more obscure technologies. This research can
document the results of the exact tests run, but any insights
beyond actual tests are merely inferred from these results.

II. LITERATURE REVIEW

Configuration management has unquestionably become sig-
nificantly more popular since the surge towards cloud comput-
ing and Infrastructure-as-Code. its roots can be traced back to
the early 90s where CFEngine (http://cfengine.com) was first
conceived by Mark Burgess who used it to maintain Unix
machines he was responsible for (Cowie, 2014). While this
was certainly a front-runner to many of the successive tools
that followed, long before the leap to cloud computing, there
were several tools available in what Basher (2019) referred to
as the ”iron age” of computing, referring to the physical racks
holding machines that still needed to be maintained.

With their prototyping tool, DRAT (Deployment Recovery
and Automation Technology), Klein and Reynolds (2019)
using a series of python scripts, developed the capability to
automatically generate configuration management scripts for
an specific existing infrastructure. The process flow used by
it can be seen in Figure 2. It begins it’s construction by
first scraping the data from each machine’s package manager
to understand what libraries were installed on it. It also

2

Figure 2. Process Flow for DRAT tool (Klein and Reynolds, 2019)

searched through a series of files paths to grab associated
configuration files corresponding to each of these libraries.
Once this analysis was done, the tool would then automatically
generate Ansible artifacts with the intention establishing a
foundation for systems not currently using any configuration
management options. The concept itself is not one that is
inherently complex, instead being more time consuming to
maintain.

An interesting survey of system configuration management
tools was identified which took 11 configuration management
tools with the intentions of comparing them across multiple
criteria (Thomas, Joosen, and Vanbrabant, 2010).

Figure 3. Tools compared by (ibid.)

As seen in Figure 3, many of the tools used were proprietary
and commercial configuration management solutions from
leading companies in the IT industry. As of today, a number
of these tools have ceased formal releases, opting to move
their functionality to open source platforms such as github

to be maintained by heavily invested or passionate individual
contributors. Only Chef and Puppet are present in this study
which makes up only half of the tools intended to be used
in this research project. The study targeted elements of each
tool such as deployment models, syntactical input and UIs,
configurable and conditional abilities, documentation, scalabil-
ity, workflows, distribution mechanisms, usability, monitoring,
versioning, security, commercial support and maturity. Dis-
regarding usability, the remainder of this list of comparison
points are almost universally available through documentation
provided by each tool, indicating that this survey was done
without attempting to utilise any of these tools, which the
team do not explicitly state that was done or required.

A similar study (Önnberg, 2012) but based just on Chef,
Puppet and CFEngine was a little more investigative in the
technical aspects of each of these tools. In his research
Önnberg (ibid.) went through installation steps and dependen-
cies of each of the tools, as well as some of the attributes
covered by Thomas, Joosen, and Vanbrabant (2010). The focus
was narrowed to focus with greater clarity on the technical
details of these tools with observations around the release
package format and alignment with the installation documen-
tation but this was the depth of the technical review and this
once again indicates that performance based assessments of
these tools is not easily found in academic literature.

III. RESEARCH DESIGN

The tools chosen for this research are Chef, Puppet, Ansible
and Salt. These were chosen as they were identified as a
selection of the most popular tools currently available with
a large online presence (Johari, 2019) to allow for further re-
search, support and information around compatibility. In order
to provide a balanced insight into the impact the tools will
have, the tests will use multiple cloud computing platforms.
In this case, Microsoft’s Azure and Amazon Web Services
(AWS) were selected to provide a mechanism to provision
computing instances on demand and at scale as needed. By
using both platforms, this should rule out any provider spe-
cific implementations that may benefit one tool over another.
Any significant deviations between the performance of the

3

same tools, executing the same tests, with only the cloud
provider differing, could indicate back end configuration more
favourably implemented for a specific tool set or underlying
technology.

A. Planned Approach

The intended approach for this research is to capture specif-
ically the performance of each tool in establishing how to
get a standard machine in it’s desired state. The process of
provisioning infrastructure, the speed of which is not a metric
that will be tracked or reporting on, is still critically important
in order to perform the experiments. Once the machines
are provisioned, they will need to connect to their relevant
master node and for each test, there will be a different set of
configuration files needed to complete the experiment.

Figure 4. Provisioning steps targeted as part of this study

Once the configuration has completed on the node, a log
will capture the time needed to execute the test and these
logs will then be collected for analysis. As seen in Figure
4, only tracking the time taken to configure the node into the
desired state is captured, provisioning the node from the cloud
provider is not considered part of the timings. Once the node is
provisioned and available from the cloud provider, the timings
will begin. Once the configuration is successfully applied and
reported back to the master, the timing will stop. As an aside
to this research, there will also be an investigation into the
usability and ease of installation for each of the tools. If a tool
is marginally faster to execute but the learning curve is much
higher and integration much more difficult, this additional
complexity is worth noting before adopting any findings based
off of this study.

IV. IMPLEMENTATION

A. Provisioning

Terraform scripts were written to create the configuration
management master nodes and this required some additional
bootstrapping to ensure they were created ready to start
operating as a master with minimal manual intervention. For

the purposes of these tests, the ”user data” provisioner
of AWS and ”remote-exec” provisioner of Azure were
used to execute a number of commands as the nodes came
online. This allowed the ability to implement changes on
the master nodes without contaminating the master with a
configuration management tool from the beginning of the test.
These commands are executed once the instance that is started
by the cloud platform is capable of executing any commands
at all.

When the slave nodes were being provisioned, the boot-
strapping of these nodes was much simpler than that of the
configuration masters. As soon as the bootstrap scripts start,
the first thing they do is create a file with the current timestamp
to allow for a baseline to understand of the time the node
was acknowledged as functional and capable of executing
commands. Secondly the slave nodes were instructed to called
the Registration API.

B. Registration API

One of the first issues uncovered in the creation of a test
harness for these experiments was the concept of how to
ensure as little delay between provisioning and beginning the
configuration of a node happened. The key problem with this
comes from the fact that regardless of the tool, there is a need
to know where the master node is and to ensure access to that
node is granted. This issue is actually something that a lot of
the tools examined in this paper will attempt to solve within
their own feature set. However, for the purposes of this study,
none of these tool-specific approaches will suffice.

Functionality that requires the Master node to scan for
newly added nodes is common but the limitation for this is that
the scan will only run when scheduled. If this is scheduled to
run on a cron, for example, every 5 minutes, any node added
30 seconds after the last scan will sit idle for 270 seconds
before the next scan is initiated and at this point, the timings
will already be compromised. While having the address of
the configuration master hard coded, or hidden behind a DNS
service to prevent dynamically allocated IP addresses from
breaking the terraform provisioning scripts, it would still need
to determine which configuration master to connect to. This
would add significant logic in the terraform scripts and another
crucial aspect of this was ensuring that any newly provisioned
slave had security clearance to access the master.

Accepting that an off-the-shelf solution was not readily
available for the use case of immediate recognition of a newly
provisioned instance, a bespoke solution was designed as seen
in Figure 5 which outlines the process used in this research.
By building an API gateway that was capable of accepting
REST requests from slave nodes in any of the platforms used
in this research, the requirement for the ability to be accessible
was met. The API gateway forwards on the request from the
newly provisioned node to a custom lambda function written
in Python which will take a series of parameters.

The configuration management tool passed to the lambda
function will be used to find the target master node. With
this instance identified, the lambda function will then connect
via SSH and execute a script that references the name of

4

Figure 5. Architecture of Registration Process

the tool in the format of addTo¡configTool¿.sh and passes in
the IP address, platform and test identifier as parameters to
the script. This script is custom built for each configuration
master type and is uploaded to the master as part of the
bootstrapping process. The purpose of this script is to do
whatever configuration is needed to ensure communication
between the master and slave can occur and to trigger the
tests immediately after the slave is acknowledged.

C. Bash File Library

While the terraform scripts will set up the nodes to a certain
extent, to get these machines to a state where they are ready for
these tests, a series of bash scripts were built to be invoked at
various points in the provisioning process. These scripts allow
for a level of abstraction from the terraform code keeping
the the initial provisioning simple enough to prevent race
conditions or timeouts. They also allow for a more parameter-
focused process flow and prevent unnecessary duplication in
the terraform files. Figure 6 runs through how these files take
a provisioned instance and bootstraps it to be able to run the
tests.

V. RESULTS

As the overarching theme of the research is the comparison
of various configuration management tools, the results are
separated by test in order to see how the single activity under
test differs from tool to tool. The results that have been
collected over a series of executions with irregular numbers of

nodes under test and across the two cloud platforms of AWS
and Azure. This data is available in summarised form in Tables
I, II, III, IV and V.

Table I
TIME IN SECONDS TO CREATE 10 STANDARD USERS

Tool Averaged Fastest time Slowest Time Variance

Ansible 11.04 8.22 12.95 1.78
Puppet 0.66 0.57 0.87 0.007
Salt 1.95 1.86 2.20 0.009

Table II
TIME IN SECONDS TO INSTALL OPENJDK-8

Tool Averaged Fastest time Slowest Time Variance

Ansible 32 29 35 2.93
Puppet 26 24 28 2.09
Salt 189 34 293 8194

Table III
TIME IN SECONDS TO CREATE 5 FOLDERS AND 50 FILES

Tool Averaged Fastest time Slowest Time Variance

Ansible 44.0 27.5 48.0 35.75
Puppet 0.11 0.10 0.12 0.00009
Salt 0.35 0.29 0.43 0.0015

5

Figure 6. Process of provisioning and testing by node type

As seen in the Tables above, Puppet will consistently
perform well in comparison with it’s peers, only being out-
paced on rare occasions but never significantly. While Ansible
can perform faster on occasion, as seen with the git tests, it’s
slower in general for most of the tests than the other tools

Table IV
TIME IN SECONDS TO CLONE TWO REPOSITORIES

Tool Averaged Fastest time Slowest Time Variance

Ansible 96 90 100 11.22
Puppet 99 87 123 147.77
Salt 624 92 837 79686

Table V
TIME IN SECONDS TO SET UP APACHE HTTP SERVER

Tool Averaged Fastest time Slowest Time Variance

Ansible 26.4 20.1 37.6 41.58
Puppet 6.72 6.17 8.00 0.2899
Salt 36.8 10.0 69.8 553

under test. Salt is effectively acting as a wild card, showing
huge potential as a high performer on occasion, achieving
speeds beyond its competitors but suffering from a chronic
case of inconsistency.

A. Azure vs AWS

Although the framework is set up to allow test execution in
an automatic fashion, due to scheduling constraints, most of
the tests for Azure were only run once, with a few being able
to get a second execution. Those that ran twice were consistent
with their earlier runs which suggests the times listed are
indicative of what to expect for tool behaviour on Azure. A
number of these tests were very close to the AWS timings as
can been seen in Table VI, but there were some anomalies
also. In particular, the installation of the JDK seemed to take
significantly longer on Azure and this was run multiple times
to see if this difference was reproducible. Similar increases
were also seen when looking at the differences in the set up
of Apache Web Server for Ansible and Puppet, both of which
seeing execution times take more than twice what the average
was on AWS. Surprisingly, Salt was faster initialising the
webserver on Azure, but with the variance of Salt in general,
there is no solid indication that it would always be faster on
Azure.

Table VI
COMPARISONS OF AVERAGE TIMES ON AWS VS AZURE

Tool Test Average AWS Average Azure Variance

Ansible Users 11.04 14.86 2.83
Ansible JDK 32 125 1339
Ansible Files 44 36 38.46
Ansible Git 96 95 10.28
Ansible Webserver 26.4 66.2 168.8
Puppet Users 0.66 4.86 1.749
Puppet JDK 26 65 129.5
Puppet Files 0.11 0.12 0.00002
Puppet Git 99 98 131.48
Puppet Webserver 6.72 14.21 4.89
Salt Users 1.95 5.17 0.868
Salt JDK 189 121 7910
Salt Files 0.35 0.44 0.002
Salt Git 624 92 92799
Salt Webserver 36.8 24.9 514.9

6

VI. CONCLUSIONS

A. Critical Analysis

Based purely on the performance metrics obtained by the
test framework as seen in Figure 6.1, Puppet would be the
logical choice for an organisation starting to investigate con-
figuration management. While not the fastest at every single
task, Puppet performs consistently well and if not the fastest
tool at performing a task, it is usually within a few seconds of
the leader. It also is the the most consistent tool, having the
least variance among each run it performed.

A consideration for this report is that the framework’s ability
to test multiple slaves or individual nodes was expected to
have minimal impact on the performance metrics gathered.
Assessing Ansible and Puppet, this appears to be the case
but when examining Salt, it appears to have difficulty when
managing multiple slaves as the time taken to apply a state
appears to be related to the number of nodes actively looking
for configuration. This is not a linear connection but the trend
shows that the fastest executions appeared when targeting
individual slaves rather than multiple slaves, suggesting that
Salt’s inconsistency is potentially a concurrency issue.

Of the three tools integrated into the test framework, Puppet
was the most difficult to set up and build tests for. While it
never reached the level of complexity offered by Chef, Puppet
was not as welcoming as Salt or Ansible for initial set up.
Salt’s documentation on setting up a Salt Master and associat-
ing minions with it was very clear and easy to follow. Ansible
is even simpler, needing just the package to be installed on the
master node through normal package manager commands to
have a working configuration master. Puppet’s documentation
was verbose and heavily focused towards commercial users
and only for the assistance of well written blogs (Kernal,
2019), was it possible to get Puppet running. This complexity
is excellently represented also by the fact that the registration
API will send requests to two nodes rather than one if it detects
Puppet is the tool under test.

From a test writing perspective, Puppet has the benefit of
in a formal repository of test cases, curated by staff and
advocates of the tool for new and established users. Salt
has something similar in salt-formula’s (Salt, 2019) but from
the experience of this study, this is not as well managed as
Puppet’s Forge (Puppet, 2019). Ansible’s Galaxy (Ansible,
2019), is arguably unnecessary considering the ease in creating
playbooks once a review of the associating documentation is
complete. This suggests that if there is likely to be relatively
common tasks needing automation, for any tool, there is likely
an existing shared resource which is a huge benefit, however
for modifying the test cases without going through one of these
mechanisms, Puppet’s native Dynamic Scripting Language
(DSL) becomes less attractive as it’s not as intuitive as the
YAML structures of Salt and Ansible.

A final consideration for this research is the cost perspective
required for these tools. Ansible, as lightweight as it is, was
perfectly capable of running a master instance on an AWS
t2.micro instance, a machine running a single virtual CPU
and 1GB of memory. Puppet and Salt both required a more
powerful instance, in this case a t2.medium node, which had

2 virtual CPUs and 4GB of memory. This instance type is
approximately 4 times the cost of a t2.micro when looking at
AWS’s various pricing structures. Although Chef did not get
fully integrated into the framework, it was manually set up
and executed and as discovered during this exercise, Chef’s
documentation recommends two separate instances, one for
workstation and one for master, both of which require at least
the specification of a t2.medium instance which makes it at
least twice as expensive as any other option proposed.

B. Limitations

The intention of this study was to target and compare the
four tools identified as part of the Literature Review, Chef,
Salt, Ansible and Puppet. As a consequence of scheduling
and under-estimating the complexity of the tool, Chef was
not integrated in time for the metric gathering activities.
This constraint of time also impacted on the stability of
the framework’s ability to execute. While the framework is
capable of running tests for Ansible, Salt and Puppet, it is
not built to recover from some of the more common issues
preventing a successful run such as race conditions or failed
setups.

C. Future Work

To speed up testing, there are a number improvements that
could be made to the framework, primarily in the reporting
section. Currently, the logs are uploaded to S3 and from there,
all log management is manual. This is not sustainable for large
numbers of test runs as each node uploads it’s own log file
and these have a lot of data when only some of it is used as
part of this study. A parser to gather these results, normalise
and visualise them would increase the effectiveness of this
framework significantly.

An obvious idea for future work is to add more tools,
tests and cloud platforms to this study. Chef and Google
Cloud were two proposed components of this initial research
which proved to be impossible to add in schedule set for this
research. It would also be useful to have the final steps of
this framework full automated, with the capability of setting
up a scheduler to call the required terraform files, poll the S3
bucket where the logs are uploaded to and then destroy all
the resources when the logs arrive. This could have allowed
for much more exhaustive testing but would have required
significant investment.

REFERENCES

Amazon (2019). Amazon uptime Metrics. URL: https:/ /aws.
amazon.com/s3/storage-classes/.

Ansible, Inc (2019). Ansible Galaxy. URL: https : / / galaxy.
ansible.com/.

Basher, Mohamed (2019). “DevOps: An explorative case study
on the challenges and opportunities in implementing Infras-
tructure as code”. PhD thesis. Umeå University.

Cowie, Jon (2014). Customizing Chef. 1st ed. O’Reilly, p. 4.
Johari, Aayushi (2019). Chef vs Puppet vs Ansible vs Saltstack:

Which One to Choose — Edureka. URL: https : / / www.
edureka.co/blog/chef-vs-puppet-vs-ansible-vs-saltstack/.

7

Kernal, Dev (2019). Set up Puppet Master and Agent on AWS
EC2. URL: https://www.kerneldev.com/2019/04/16/set-up-
puppet-master-and-agent-on-aws-ec2-part-2/.

Klein, John and Doug Reynolds (2019). “Infrastructure as
Code: Final Report”. In: Software Engineering Institute.
URL: https://resources.sei.cmu.edu/asset files/WhitePaper/
2019 019 001 539335.pdf.

Lerner, Andrew (2014). The Cost of Downtime. URL: https:
//blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-
downtime/.

Oladapo, Victor and Godwin Onyeaso (2018). “Empirical
Investigation of the Moderating Effects of Organizational
Size on Ecommerce Capabilities and Organizational Perfor-
mance”. In: International Journal of Economics, Business
and Finance 5.1, pp. 1–9. URL: http : / / www. ijebf . com /
IJEBF Vol . %205 , %20No . %201 , %20August % 202018 /
Empirical%20Investigation.pdf.

Önnberg, Fredrik (2012). “Software Configuration Manage-
ment: A comparison of Chef, CFEngine and Puppet”. In:
URL: http://www.diva-portal.org/smash/get/diva2:536382/
FULLTEXT01.pdf.

Plant, Tina (2014). Downtime costs per industry. URL: http://
ecessa.wpengine.com/wp-content/uploads/2014/08/Screen-
Shot-2014-08-18-at-8.18.22-PM.png.

Puppet, Forge (2019). Puppet Forge. URL: https://forge.puppet.
com/.

Salt, Formulas (2019). Project Introduction - SaltStack-
Formulas master documentation. URL: https://salt-formulas.
readthedocs.io/en/latest/intro/index.html.

Thomas, Delaet, Wouter Joosen, and Bart Vanbrabant (2010).
“A Survey of System Configuration Tools”. In: Proceed-
ings of the 23rd Large Installations Systems Administration
(LISA) conference, pp. 1–14. URL: https://www.usenix.org/
legacy/event/lisa10/tech/full papers/Delaet.pdf.

